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Abstract

Choosing the right metric [1] can be crucial to designing performant artificial intelligence models.
Thousands of packages and libraries have been built and written just for providing these metrics.
Cosine similarity is one of many metrics used extensively in natural language processing (NLP)
tasks. The paper will introduce the technique and discuss its advantages and disadvantages as
well as compare it to other approaches. Additionally, sample implementations of the technique

will also be provided.

1 Introduction

There are many approaches for determining whether two texts are semantically similar to each
other. Cosine similarity is one of those methods. Derived from the law of cosines [2], the technique

is now widely used in natural language processing (and other) problems.

In order to understand how cosine similarity works, let us first discuss how a text document can

be modeled.

1.1 Text Document Modeling

There several ways in which a text document can be modeled. This includes a bag-of-words model-
ing, where the frequency of a term in a text document represents its weight and tf-idf vectorization.

The primary goal of text document modeling is to transform the textual data into the numeric data
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(in this case, term vectors). Once the numeric data is obtained, we can then apply mathemati-
cal techniques including text semantic similarity approaches such as cosine similarity in order to

compare if two documents are similar to each other.

1.2 Cosine Similarity

Cosine similarity is a measure of similarity between two non-zero vectors of an inner product space
that measures the cosine of the angle between them [3]. For two vectors @ and b, the cosine can
be computed as @ - b = |@||b| cos#, where 0 is the angle between the vectors. This is also known

as the Euclidean dot product formula. The cosine of two vectors can also be computed using their

. oo ai - 1 R . o

coordinates: if @ = and b = , then @ - b = a1b1 + a2by. Hence, for two vectors @ and b
as ba

with coordinates a1, as and by, bs respectively, the following holds:
@-b=|a||b] cosf = a1by + asbs

If the vector coordinates are known, then one can also compute the magnitude of the vector. For
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- 2 . . . - a2
vector T = , the magnitude is \/JJ% + :c% + -4 x2. Hence, if we have two vectors @ =
Tn an
b1
- b ) )
and b= , then the cosine of an angle between them is:
bn

a1bi + agby + -+ - + anby
Val+a2+ -+ a2\ b +bi+ -+ b2

In other words, if we have two vectors with all coordinates specified, it is possible to compute the

cosf =

cosine similarity between them.

1.3 Example

3 - 5
As an example, consider two vectors @ = and b = . Then the magnitude of a is v/3% + 42 =
4 12

5 and the magnitude of b is v52 + 122 = 13. It follows that @ -b = 15 + 48 = 63 and |@| x |b] =
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63
5 x 13 = 65. Therefore, the cosine of an angle between the vectors is 65 ~ 0.969 which is the

similarity measure between these two vectors.

For those who like to think visually, below is the plot from which one could derive the cosine of the

angle 6 (e.g., by applying the law of cosines).
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Figure 1: Vector Cosine Illustration.

2 Applications

Cosine similarity is one of the most commonly used approaches in calculating semantic similarity
of texts. Therefore, it is naturally employed in natural language processing tasks. Many NLP
applications need to compute the semantic similarity between two short texts. Search engines, for
instance, need to model the relevance of a document to a query on the semantic level. Similarly,
Q& A websites such as Stack Overflow and Quora need to determine whether a question has already

been asked before. Cosine similarity is usually one of the typical first solutions to such problems.

Suppose that we have two documents Dy and Dy modeled as term vectors t_{ and t5 respectively.
Then the similarity of two documents corresponds to the correlation between the vectors and can

be quantified as a cosine of the angle between the vectors. Thus, the similarity formula [4] is:
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t1-1

SIMc(t1,t2) = m

As a result, the similarity value is non-negative, bounded by the closed interval [0, 1].

It is important to note that the metric is a measurement of orientation and not the magnitude.
It can be thought of as a comparison of documents on a normalized space since it does not only

consider the magnitude of word counts of each document, but also the angle between the documents.

Below find a simple Python implementation of cosine similarity.

import numpy as np

def cosine_similarity(a: np.array, b: np.array) -> float:

"""Returns the cosine similarity value of two vectors.”"""

dot_product: float = np.dot(a, b)

magnitude_a: float = np.linalg.norm(a)

magnitude_b: float = np.linalg.norm(b)

similarity: float = dot_product / (magnitude_a * magnitude_b)

return similarity

if __name__ == "__main__":
a: np.array = np.array([1, O, 1, O, 1, 1, 1, 1, 1, 1, 11)

b: np.array = np.array([O0, 2, 1, 0, 1, 3, 0, O, O, 1, O1)

print(cosine_similarity(a, b)) # Prints out 0.5

Figure 2: Sample Python Implementation of Cosine Similarity.

The program is fairly simplistic (yet performant) and as shown above, cosine_similarity function
takes two vectors and prints out the cosine similarity between them. Vectors a and b can be thought

of as vectorized text (i.e., the vectorization algorithm has already been applied to two texts).
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3 Performance and Comparison to Other Approaches

Performance of cosine similarity can be altered by the approach used for vectorization [5] (e.g., tf-
idf vectorization might yield better results than Word2Vec vectorization). Needless to say that the
right vectorization strategy could drastically increase the performance, while the poor vectorization

will, unsurprisingly, result in the poor performance.

There are many other approaches for finding semantic similarity between the texts. The recent
advancements in the domains of artificial intelligence and natural language processing allowed for
development of models such as BERT [6], BioBERT [7], and Universal Sentence Encoder (USE) (8],
all of which can be used for high-accuracy text semantic similarity score computations. And all of

these approaches can also be used (for generating embeddings) in conjunction with cosine similarity!

4 Current Work

Cosine similarity is very much used in the modern, state-of-the-art papers, such as ones cited in
this paper. Its flexibility allows one to apply it under virtually any settings, as long as documents
can be represented as vectors. Besides, it is widely used for benchmarking purposes and is usually

a standard against which the new approaches are tested.

5 Summary

We have introduced cosine similarity and walked through examples to strengthen the understanding
of the concept. Besides, we discussed the importance of cosine similarity in the domains of artificial
intelligence and natural language processing and its prevalence in the state-of-the-art work. Sample

Python implementation of the algorithm was also provided.
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