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Abstract

This paper explores the topological approach to the problem of robot motion planning.

Particularly, we will discuss the safe way to coordinate automated guided vehicles or

AGVs. AGVs are mobile robots which are used extensively in manufacturing facili-

ties. Since these robots are costly and cannot tolerate collisions, one of the biggest

challenges in designing such facility is setting up mobile robot routes to achieve the

safe and efficient coordination of robots. The tools and concepts of topology are nat-

urally employed in this planning process. This paper follows the bottom-up approach

by first introducing concepts and then building upon these ideas. It does not assume

any background neither in topology nor in robotics and is therefore accessible to most

undergraduate mathematics students with the knowledge of set theory.
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Configuration Spaces

We shall start by introducing the notion of configuration spaces. The idea of configuration

spaces comes from physics. In classical mechanics, the configuration space is the vector space

defined by the generalized coordinates (coordinates that describe the configuration of the

physical system). Put it simply, the configuration space is the set of all possible states that

could exist in the physical system. For instance, the configuration space of some particle in

the room is the set of all points/states of the type (x, y, z) where x, y and z are the coordinates

bounded by the room. If the room is a 3× 3× 3 cube then we define the configuration space

of the particle by

C3(room) = {(x, y, z) | 0 ≤ x, y, z ≤ 3}.

In other words, the configuration space of the particle, is all of 3× 3× 3 cube (this example

obviously assumes that the particle is allowed to move freely in the room). The configuration

space of the same particle in a spherical room, however, would be the set of all points that

are in a sphere.

It appears that the physical notion of configuration spaces is very much connected to that

of mathematics. In fact, the idea is the same but rather generalized. To better understand

configuration spaces, let us first go through several classic examples.

[1] Consider a planar system where we have a rod with a fixed end that can rotate freely.

Then it is easy to see that the space of all possible configurations of the rotating rod is a

circle.

Circle obtained by the rotational motion of the rod.

In other words, as the rod rotates, it creates the circle around itself with the radius equal to

the length of the rod. This configuration space is also known as S1.
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[2] On the other hand, the configuration space of the two-rod system in 3D space where one

rod is fixed and the other one is attached to it (also known as a 2R robot) is a torus. This

space is also known as S1 × S1 configuration space.

A two-rod system (2R robot).

We already know that a rod with fixed end generates a circle. In this case, we have two

rods: one attached to the ground and the other one attached to the end of the first one.

Then obviously both of the rods can go through a full circle of states and therefore, create

a configuration space which geometrically represents a torus.

A torus obtained by the motion of two-rod system.

As of now, this is all we need to know about the configuration spaces. This idea will be very

useful once we learn more about other topological concepts.

Topological Spaces

The fundamental idea in topology is that of a topological space. We will use this idea to

then introduce and define other important concepts.
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Definition. [3] A topology on a set X is a collection T of subsets of X having the following

properties:

(1) ∅ and X are in T .

(2) The union of the elements of any subcollection of T is in T .

(3) The intersection of the elements of any finite subcollection of T is in T .

A set X for which a topology T has been specified is called a topological space.

Let us first look at some examples. Consider a set X = {a, b, c}. Then we can define a

topology on X by T = {∅, {a, b, c}, {a, b}, {c}}. Observe that ∅, X ∈ T therefore the

first criterion is satisfied. It is easy to see that arbitrary unions will be in T since the

only “interesting” case is when we consider {a, b} and {c}, but in this case {a, b} ∪ {c} =

{a, b, c} ∈ T . This satisfies the second requirement. Finally, any arbitrary intersection of the

finite subcollections of T is also in T and therefore, we conclude that T is indeed a topology

on X. Hence, X is a topological space (note that, properly speaking, a topological space is

an ordered pair (X, T ), but we often omit mentioning T and say that X is a topological

space).

At this point, you might have already noticed that one could always define more than one

topology for a given set. In the previous example, sets P(x) (powerset of x) and {∅, X} are

also topologies on X called discrete and indiscrete topologies. In fact, for any set X, P(x)

and {∅, X} will always be two distinct topologies on X.

We will now get acquainted with the notion of the open set.

Definition. [4] If X is a topological space with topology T , we say that a subset U of X

is an open set of X if U belongs to the collection T .

Consider our topology T = {∅, {a, b, c}, {a, b}, {c}} on the topological space X = {a, b, c}.

Then notice that ∅, {a, b, c}, {a, b}, {c} ∈ T and therefore, all are open sets.
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Continuous Functions and Homeomorphisms

The notion of continuous functions is familiar to most high-school students. Most people

associate them with a nice-looking monotonically increasing or decreasing functions with no

leaps or jumps. There are several definitions for a function continuity. Here is the calculus

definition.

Definition. [5] A function f(x) is continuous at a point x = c if and only if it meets the

following three conditions:

1. f(c) exists (c lies in the domain of f).

2. limx→c f(x) exists (f has a limit as x→ c).

3. limx→c f(x) = f(c) (the limit equals to the function value).

In topology we cannot use this definition since the definition assumes that one could take a

limit of the function. This, however, is sometimes very difficult or nearly impossible when

considering functions defined over more abstract sets such as the configuration space of AGV.

Now, we shall introduce more general notion of continuity.

Definition. [6] Let X and Y be topological spaces. A function f : X → Y is said to be

continuous if for each open subset V of Y , the set f−1(V ) is an open subset of X.

It is important to note that in this definition f−1(V ) does not refer to the inverse of the

function. Therefore, we are not assuming that f : X → Y is a bijection. f−1(V ) refers to

the preimage (the elements of the domain that map to some elements in the codomain) of

the function. In other words, the function f : X → Y over two topological spaces X and Y

is continuous if and only if every open set in the image is mapped by an open set from the

preimage.

This is the case where the visualization might be useful to see how the definition of continuous

functions really works. Consider a continuous function f : X → Y where X and Y are

topological spaces with topologies TX and TY .
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A continuous function f : X → Y .

In the figure above, the big blobs X and Y are topological spaces and the smaller blobs TX
and TY are the topologies on X and Y respectively. By the definition, the elements in TX or

TY are open sets. Then notice that the function f : X → Y shown above is continuous. All

the points which are in TY have a preimage in TX . Note that there are points in Y that do

not have a preimage in TX , but it is of no importance to the continuity of f since it must be

open sets in Y (not just any set) that must have an open preimage.

The function below, however, is not continuous as there is one point that is not in TX but

maps to a point in TY (it is highlighted with the red arrow).

A discontinuous function f : X → Y .

Now that we are familiar with the notion of continuous functions, we shall introduce a new

concept, that of homeomorphism.

Definition. [7] Let X and Y be topological spaces; let f : X → Y be a bijection. If both
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the function f and the inverse function

f−1 : Y → X

are continuous, then f is called a homeomorphism.

The important fact about homeomorphisms is that they preserve the topological structure.

Roughly speaking, a topological space is a geometric object. We say that two objects are

homeomorphic if one can be obtained from the other by continuous deformation (vice versa).

From the topological viewpoint, homeomorphism implies equality and therefore, two objects

are considered the same if they are homeomorphic to each other.

Connectedness and Path Connectedness

One of the important ideas in topology is that of connectedness. This idea is used extensively

in various other fields of mathematics such as graph theory and knot theory. Let us first define

connectedness.

Definition. [8] Let X be a topological space. A separation of X is a pair U, V of disjoint

nonempty open subsets of X whose union is X. The space X is said to be connected if

there does not exist a separation of X.

Consider a topological space X = {a, b, c} with a topology T = {∅, {a, b, c}, {a, b}, {c}}.

Then it is easy to see that X is a disconnected space. Sets {a, b} and {c} are open since

{a, b}, {c} ∈ T . Besides, {a, b}∩{c} = ∅ and {a, b}∪{c} = {a, b, c} = X with {a, b}, {c} 6= ∅.

Hence, U = {a, b} and V = {c} is a pair of disjoint open subsets of X whose union is X and

therefore U, V is a separation of X. This means that X is a disconnected space.

On the other hand, a topological space Y = {a, b} with a topology T = {∅, {a, b}, {a}} is a

connected space as there is no pair of disjoint nonempty open subsets of Y such that their

union is Y . In other words Y has no separation. Note that ∅ ∪ {a, b} = {a, b} = Y , but it

must be nonempty sets whose union is Y . Therefore, ∅, {a, b} is not a separation of Y .

Knowing what it means for a topological space to be connected, we can now introduce the

notion of path connectedness.
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Definition. [9] Given points x and y of the space X, a path in X from x to y is a continuous

map f : [a, b] → X of some closed interval in the real line into X, such that f(a) = x and

f(b) = y. A space X is said to be path connected if every pair of points of X can be joined

by a path in X.

Path connected spaces are certainly related to the connected spaces. [10] In fact, one could

easily verify that path connectedness implies connectedness. Therefore, every path-connected

space is connected.

There is an important theorem on path connected spaces which implies that a product of

two path connected spaces is path connected. Let us prove this theorem.

Proof. Suppose that X and Y are path-connected spaces. Let x1 × x2, y1 × y2 ∈ X × Y .

Notice that X × y1 is homeomorphic to X and thus, is path-connected. Therefore, there

exists a continuous function f : [0, 1] → X × y1 with f(0) = x1 × y1 and f(1) = x2 × y2.

Besides, x2 × Y is homeomorphic to Y and thus, is path-connected. Therefore, there exists

a continuous function g such that g : [0, 1]→ x2×Y with g(0) = x2× y1 and g(1) = x2× y2.

Let’s now define a function h in the following way:

h(x) =

f(x
2
) if 0 ≤ x ≤ 1

2

f(x
2

+ 1
2
) if 1

2
< x ≤ 1.

Then according to the [11] the pasting lemma, h is continuous. Besides, h(0) = f(0
2
) =

f(0) = x1 × y1 and h(1) = g(1
2

+ 1
2
) = g(1) = x2 × y2. Therefore, h is a path from x1 × y1 to

x2×y2 and because x1×y1 and x2×y2 are arbitrary, we have thatX×Y is path-connected.

Now, because the product of two spaces is path connected, we can generalize this notion to

n path connected spaces X1, X2, . . . , XN and say that the product X1×X2×· · ·×XN is also

path connected. The proof of this using induction is almost trivial so we will not go through

it in this paper.
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Configuration Spaces Revisited - Robotic

Configurations

In previous sections, we went through what is called a configuration space. Yet, we did not

have a precise definition for it since it varies from field to field. Let us now define what a

configuration space means in the robotics context.

Definition. [12] A configuration of a robot is a specification of the position of all points

of a robot. The configuration space of a robot is the space of all configurations of a robot.

Suppose that we have a robot R that can move freely on a line L. Then we can model the

robot as a point with a coordinate xR. The configuration space for this robot is

C1(L) = {xR | xR ∈ L} = L = L1.

with every point in the room being a unique configuration of the robot.

What if we had 2 robots (say R1 and R2) that can move freely? Then the configuration space

would be C2 which can be represented as the set

C2(L) = {(xR1 , xR2) | xR1 , xR2 ∈ L} = L× L = L2.

The result here is somewhat natural. If we have one robot moving on a line, we have a

configuration space L. If there are two robots, the configuration changes from a single point

to a 2-tuple ((xR1 , xR2) in the case) which yields a configuration space equal to L2.

In general, the configuration space for n robots R1, R2, . . . , Rn that can move freely on a line

L is

Cn(L) = {(xR1 , xR2 , . . . , xRn) | xR1 , xR2 , . . . , xRn ∈ L} = L× L× . . . . . . L︸ ︷︷ ︸
n times

= Ln.

In fact, we could generalize this notion even further. Instead of having n robots moving on a

line L, consider n robots moving on some k-dimensional space Lk. Then each configuration
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will be a tuple consisting of n number of k-tuples and the configuration space of all n robots

will be a set of all such tuples. Therefore, we have

Cn(Lk) = {((xR1,1 , xR1,2 , . . . , xR1,k
), . . . , (xRn,1 , . . . , xRn,k

)) | (xR1,1 , xR1,2 , . . . , xR1,k
),

. . . ,

(xRn,1 , . . . , xRn,k
) ∈ LK}

= Lk × Lk × · · · × Lk︸ ︷︷ ︸
n times

= Lnk.

where (xR1,1 , xR1,1 , . . . , xR1,k
) is the coordinate of R1, (xR2,1 , xR2,1 , . . . , xR2,k

) is the coordinate

of R2, etc.

Safe Robotic Configurations

At this point, we have enough machinery to understand safe robotic configurations. Let us

model each robot with a point that moves through a topological space representing the robot

routes in the factory.

Consider two robots R1 and R2 moving through the line represented by L (L is obviously a

topological space). Then the configuration space for these robots is

C = {(xR1 , xR2} | xR1 , xR2 ∈ L} = L× L = L2.

Now, since xR1 and xR2 represent the coordinates of the robots, we cannot allow them to

be the same. In other words, if xR1 = xR2 , we have a collision. We therefore modify our

configuration space C to eliminate all the configurations where xR1 = xR2 . Let us call this

new configuration space SC (a safe configuration space) with

SC = {(xR1 , xR2) | xR1 , xR2 ∈ R, xR1 6= xR2}.

It is really helpful to think about this configuration space geometrically. Particularly, let’s

think about this space as a small chunk of the XOY coordinate system. To do this, we will
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need to do some transformations. Since L is a line we might as well represent it as a closed

interval L = [0, l] where l is the length of the line L and therefore l ∈ R. Now we can say

that both robots R1 and R2 are moving through the interval [0, l]. Let us now consider the

motion of R1 and R2 independently. To do this, we make a copy of the interval [0, l], put one

interval as an X axis and the other one as the Y axis.

l

l0 xR1

xR2

xR1

xR2

xR1

xR2

The configuration space C as a chunk of XOY coordinate system.

From the picture above, it is easy to see that the points where xR1 = xR2 are the points on

the diagonal of the square bounded by interval [0, l] on X axis and its copy on the Y axis.

We denote this diagonal by ∆. Then we can simply say that

SC = C −∆.

In the general case with n robots and the topological space X, it is easy to see that

SCn = X ×X × · · · ×X︸ ︷︷ ︸
n times

−∆ where ∆ = {(xR1 , xR2 , . . . , xRn) | xRi
= xRj

for some i 6= j}.

We are basically taking the product of n copies of X because we have n robots and account

for the position of each robot independently. Every configuration in this configuration space

will look like (xR1 , xR2 , . . . xRn) and we eliminate each configuration for which there exists

xRi
and xRj

such that xRi
= xRj

with i 6= j. This means that we do not allow any two robots

to have the same coordinates in any configuration which ensures that there are no collisions.

Safe Robotic Relocations

Now that we know about safe robotic configurations, let us model the relocation of n robots

in the space X. To do this, we need to use a path in SCn(X). Suppose that initially the
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robots had the configuration (I1, I2, . . . , In) where Ij is the initial position of the j-th robot.

Then we define what is called the relocation of these n robots.

Definition. [13] We define a relocation of the n robots from the initial configuration

I = (I1, . . . , In) to the finial configuration F = (F1, . . . , Fn) to be a path p : [0, 1]→ SCn(X)

such that p(0) = I and P (1) = F .

Since the robots are mapped to the configuration in SCn(X), by the definition of SC, there

is no way that any two robots will occupy the same coordinate and therefore, the map will

ensure that there are no collisions.

We can now introduce the notion of attainability of configurations using which we will

define some other important concept.

Definition. [14] Given two configurations of the robots, M = (M1, . . . ,Mn) and N =

(N1, . . . , Nn), we say that N is attainable from M if there is a relocation of the robots from

M to N .

Now let’s apply the definition of path connectedness that we covered a few chapter ago. Notice

that if the safe configuration space SCn(X) is path connected, then every configuration is

attainable from every other one and therefore, robots can move freely in the space. In this

case, we say that the robots are freely transportable in X.

The notion of free transportability is of the utmost important to robotics. We will spend the

rest of the paper exploring the free transportability under various robotic configurations.

Determining Free Transportability

Motion on Line L

Consider two robots R1 and R2 on the line L that we have discussed previously. We know

that the safe configuration space for two robots is the square without the diagonal. Note

that we consider the motion of R1 robot on the horizontal line segment [0, l] and the motion

of R2 robot on the vertical [0, l] line segment.
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l

l0

A safe configuration space for two robots moving on the line L.

Then this safe configuration space is not path connected (recall that path connectedness

means that every pair of points of SC can be joined by a path in SC). Observe that the safe

configuration space SC is the union of two sets U1 = {(xR1 , xR2 | xR1 , xR2 ∈ L, xR1 < xR2}

and U2 = {(xR1 , xR2 | xR1 , xR2 ∈ L, xR2 < xR1} where U1 is the set in which R1 is to

the left of R2 and U2 is the set where R2 is to the left of R1. Notice that one of the sets

has all the configurations that lie above the excluded diagonal and the other one has all

the configurations that lie below the excluded diagonal. It is easy to show that this safe

configuration space is not path connected. Take one point on the one side of the diagonal

and the other one on the other side (in other words, consider one configuration from the set

U1 and the other one from the set U2). If one would connect these points, there would not

be a way to avoid intersection of the diagonal.

l

l0

An attempt to connect two points from one side of the excluded diagonal to the other.

Thus, the safe configuration space SC is not path connected and by the definition of free

transportability, R1 and R2 are not freely transportable in L.
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Motion on Circle S1

Consider two robots R1 and R2 on the configuration space S1 from the first section. It is

interesting to know what would the configuration space look like in this case. We know

that the configuration space S1 is a circle. Then we consider the motion of R1 and R2

independently. Let us now apply the same trick as we did with two robots on the line L. But

now, since a circle is a 2D object, we need to do it in the 3D space. Therefore, it is helpful to

think about XOY Z coordinate system. We put a circle for R1 on the XOY plane and the

circle for R2 on the circle for R1 in the way that that these two circles share only one point.

For simplicity, we will refer to these circles as R1 and R2 in all further correspondence. The

picture below is the visualization of our approach.

Figure A shows the first position of the circle and picture B the other one after sliding.

Recall that each configuration looks like (xR1 , xR2). Then to get all the configurations we

keep the circle on the bottom (on the XOY plane) fixed and slide the circle on the XOZ

plane one point at a time. Each of these slides will generate a set of configurations which

would be a set of all points of upper circle paired with a single point on the bottom circle.

We will continue this motion exhaustively, until there are no points on the bottom circle.

Figure B shows the picture when we are halfway through. Geometrically, however, it is easy

to see that the shape we get is a torus ( [15] in fact, the configuration space for n robots on

the circle is the n-tori).

Obviously, we also want to know what is the safe configuration space for these two robots.

Here we will use another trick. Notice that we can glue the edges of a square to obtain a
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torus. Therefore, we can “unfold” the torus to get the square. We can represent the torus as

a square with opposite sides identified.

Torus as a square with opposite sides identified.

The picture above shows the safe configuration space which is the square minus the diagonal

line. We can decompose this square into two “semi-open” (openness in the geometric context

means exclusion, in this case we call the parallelogram “semi-open” since two sides are

excluded) triangles and put them together to get a parallelogram.

Parallelogram without left and right sides constructed from the square without diagonal.

Then it is easy to see that the space shown above is homeomorphic to the space (0, 1)× S1

which is an open annulus (we can continuously deform this parallelogram to get an open

annulus).

An open annulus.

16



THE TOPOLOGY OF ROBOTIC CONFIGURATION AND MOTION PLANNING

Notice (0, 1) and S1 are both path connected and therefore, as we have proven in the previous

section, the product of two path connected spaces is connected and (0, 1)× S1 is path con-

nected. Finally, we conclude that the safe configuration space SC2(S1) is also path connected

and therefore, robots R1 and R2 are freely transportable in the space S1.

Motion on Y -shaped topological graph

Consider two robots R1 and R2 moving through the Y -shaped topological graph. We, once

again, model these AVGs as points moving through this space and denote the space by Y .

Y -shaped topological graph.

The safe configuration space for this graph is SC2(Y ) = Y ×Y −∆ where ∆ is the set of all

points where the coordinate of R1 is the same as that of R2. Thus, ∆ is the set of all points

where we have a collision. With the picture we have now, it is very difficult to determine

the free transportability of the robots in this space. Therefore, we first need to simplify this

problem and deal with smaller sub-problems.

Notice that letter Y is composed by putting three branches together. Let us use this fact and

consider each of these three branches independently. For simplicity, we call these branches

α, β, and γ.
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α

β

γ

Y -shaped topological graph with branches α, β, and γ.

Then we can rewrite the safe configuration space SC2(Y ) in terms of α, β, and γ.

SC2(Y ) = ((Y × α)−∆)) ∪ ((Y × β)−∆)) ∪ ((Y × γ)−∆)).

We can now explore each of the subsets of SC2 and then find the way to glue them together

to obtain SC2(Y ).

Without a loss of generality, let us consider the configuration space (Y ×α)−∆. Notice that

Y is already a two-dimensional space. If we multiply it by α we are basically replicating Y

and putting the copies on top of it (think of how one calculates the volume of a cylinder).

α β

γ

α

C2(Y × α) configuration space.

Now, let us see how the safe configuration space SC2(Y × α) would look like.

18
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α β

γ

α

SC2(Y × α) safe configuration space.

The picture above shows the safe configuration space for C2(Y × α). Notice that the square

α×α is the case we already covered when we had a motion on the line L. The diagonal is the

set of all points where robot R1 and R2 have the same coordinates and therefore we exclude

it. Thus, the safe configuration space is really everything of C2(Y ×α) but the diagonal. The

safe configuration space is therefore split into the isosceles right triangle formed by sides α

and α, and the rest which is shown on the picture.

It is easy to see that the rest of the cases are very similar to this. Here are safe configuration

spaces for C2(Y × β) and C2(Y × γ).

α β

γ

β

α β

γ

γ

SC2(Y × β) (to the left) and SC2(Y × γ) (to the right) safe configuration spaces.

Notice that all three safe configuration spaces have arrows. Now, to get a safe configuration

space for C2(Y × Y ), we take safe configuration spaces for C2(Y × α), C2(Y × β), and

C2(Y × γ) and glue them together in the way that the arrows match (singles arrows match

single arrows, double arrows match double arrows, and triple arrows match triple arrows).

The picture below represents a safe configuration space SC2(Y × Y ) after the gluing is

complete.
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SC2(Y × Y ) safe configuration space.

The empty hole in the middle corresponds to both robots being in the intersection of α, β,

and γ. Now, notice that this configuration space is path connected since every pair of points

in SC2(Y × Y ) can be joined by a path in SC2(Y × Y ). Therefore, every configuration is

attainable from every other one and thus, AVGs R1 and R2 are freely transportable in Y .
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